# **Fire Suppression Systems Association**

3601 East Joppa Road, Baltimore, MD 21234 | T: (410) 931-8100 | F: (410) 931-8111 | fssa.net

# FSSA Webinar Clean Agents 101

## Todd Stevens, SET, CFPS

Fire Protection Special Hazards Project Manager JC Cannistraro LLC

## Michelle Thompson, MBA

Corporate Director of Marketing BFPE International







- FSSA Overview
- Fire Protection and YOU!
- Clean Agent Options
- Clean Agent System Design
- Your Clean Agent System
- Questions / Answers





- FSSA Overview
- Fire Protection and YOU!
- Clean Agent Options
- Clean Agent System Design
- Your Clean Agent System
- Questions / Answers



## **FSSA** Overview

#### What is the Fire Suppression Systems Association (FSSA)?

- Not-for-Profit Trade Association founded in 1982
- Domestic & International members comprised of academics, consultants, designer/installers, manufacturers and suppliers
- Members are specialists in protecting high value special hazard areas from fire.
- Always accepting new members.



## **FSSA** Overview

#### **Mission of Fire Suppression System Association (FSSA)**

The FSSA is dedicated to promoting use of, and being the recognized leader on, special hazard fire protection systems; employing existing and new technologies to safeguard people, high-value assets and the environment.

As a global-reaching organization, the FSSA provides our members support and guidance with many questions or issues that arise – with a strong united voice.



# **FSSA** Overview

#### **Support and Guidance**

- SHAPE Program <u>Special Hazards</u> <u>Awareness</u> <u>Promotion & Education</u>
- **Online Training**
- **Design Guides**
- Webinars
- Annual Forum





- FSSA Overview
- Fire Protection and YOU!
- Clean Agent Options
- Clean Agent System Design
- Your Clean Agent System
- Questions / Answers



# Fire Protection and YOU!

## Considerations

- Irreplaceable Assets
- High-Valued Assets
- Data
- Intellectual Property
- Financial Records
- Environmental Goals
- Clean-Up









# Fire Protection and YOU!

## Considerations



- Business Interruption
- Insurance
- Lawsuits
- Collateral Damage
- Injury-Related Claims
- Loss of Customer Confidence
- Downtime





## What type of fire protection do you want?







## What are you protecting?



# **Clean Agents for Fire Extinguishment**



# **Clean Agents for Fire Extinguishment**



#### -Clean Agent System

- <u>Above-Floor</u> Protection Piping Network and Discharge Nozzles
- <u>Below-Floor</u> Protection Piping Network and Discharge Nozzles
- Releasing Panel with Detection and Control
- Container with Clean Agent

# **Clean Agents for Fire Extinguishment**



#### -Clean Agent System

- A <u>System Manufacturer</u> designs and lists their Clean Agent System for a specific Clean Agent.
- An <u>Installer</u> represents the System Manufacturer and installs the Clean Agent System for the <u>Owner</u> to protect their <u>Special Hazard</u>

## **Key Players**



## **Owners with Special Hazards to Protect**





- FSSA Overview
- Fire Protection and YOU!
- Clean Agent Options
- Clean Agent System Design
- Your Clean Agent System
- Questions / Answers



# Clean Agent Options - Groups



# **Clean Agent Options - Groups**



## How Do Clean Agents Work?



#### **Fire Tetrahedron**



## Halocarbons and Reaction Interruption



## Halon 1301 and the Environment





<u>But</u> - Negative Impact to the Environment!

Halon 1301 contributes to the depletion of the ozone layer





## What Happened to Halon 1301?



## **Montreal Protocol – 12/31/93**



# Now what?





# Need Halon 1301 Alternative(s)

<u>Protects</u> the Contents of the Structure, High-Value Assets, and Business Continuity
Safe for People, Assets, and the Environment



## Significant New Alternatives Policy-SNAP

- Developed by the EPA as part of the Clean Air Act
- Evaluate agents developed as alternatives for Ozone Depleting Substances (ODS) like Halon 1301
- Approved Agents :
  - same suppression qualities as Halon
  - non-ozone depleting
  - not harmful to people or the environment
- Regulates safe usage
- Program continues as part of the NFPA





# **Clean Agent Options - Groups**



## **Key Players**



## **Owners with Special Hazards to Protect**





- FSSA Overview
- Fire Protection and YOU!
- Clean Agent Options
- Clean Agent System Design
- Your Clean Agent System
- Questions / Answers



| 2001 |                                                                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                  |
|      | NFPA <sup>®</sup> 2001                                                                                                           |
|      | Standard on                                                                                                                      |
|      | Clean Agent                                                                                                                      |
|      | Fire Extinguishing                                                                                                               |
|      | Systems                                                                                                                          |
|      | 2012 Edition                                                                                                                     |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      | NETRA". I Barbaryonaretti. Parki, PO dani 9101, Olanog, MA 021099-3471, USA<br>An Indormational Gades and Standarts Degesization |
|      |                                                                                                                                  |
|      |                                                                                                                                  |

Image: NFPA









# Why, Where and When

## Why Do We Use Clean Agents:

- Building contents include valuable commodities
- Minimize downtime from a fire event
- Early detection and extinguishment reduces smoke damage
- Clean, No Residue, Electrically Non-Conductive
- 3-D, shielded objects
- NO BUSINESS INTERRUPTION!!!





# Why, Where and When

## Where Do We Consider Use of Clean Agents:

- Data Centers / Computer Rooms (Everyone has one)
- File Storage
- Wind Turbines
- Museums / Art Galleries / Libraries
- Electrical Vaults / Switch Gear Rooms
- Cell Sites
- Rare Car Storage
- Almost Always and Everywhere!!



# Why, Where and When

#### When Do We Consider Use of Clean Agents:

- Owner Request
- Engineer Specifications
- Contractor Suggestion







#### **Conceptual Design:**

Space planning

- How many Cylinders?
- How large are the Cylinders?

How do we determine the amount of Agent Required?

- Select Agent type
- Determine the design concentration
- Volume of the space being protected LxWxH

#### Minimum Design Concentrations Based on the NFPA 2001 Standard

|                             | FK-5-1-12<br>(Novec™ 1230) | HFC-227ea<br>( <b>FM-200</b> ™) | HFC-125<br>(FE-25™) |                                |
|-----------------------------|----------------------------|---------------------------------|---------------------|--------------------------------|
| Class A/C<br>(2008 ed)      | 4.2%                       | 6.25%                           | 8.0%                |                                |
| Class A<br>(2012 ed)        | 4.5%                       | 7.0%                            | 8.7%                | 10,000 ft <sup>3</sup><br>room |
| Class C<br>(2012 ed)        | 4.7%                       | 7.9%                            | 9.0%                |                                |
| Class B<br>(2008 & 2012 ed) | 5.85%                      | 8.7%                            | 11.3%               |                                |
|                             |                            |                                 | NFPA 2001           | -                              |

Table A.5.5.1(a) FK-5-1-12 Dotal Flooding Quantity (U.S. Units)<sup>a</sup>



|                   | Weight Requirements of Hazard Volume, $W/V$ (lb/ft <sup>3</sup> ) <sup>b</sup> |        |        |                                                 |          |        |        |        |        |  |  |
|-------------------|--------------------------------------------------------------------------------|--------|--------|-------------------------------------------------|----------|--------|--------|--------|--------|--|--|
| Temp(t)           | Specific Vapor                                                                 |        | ·J /0  | Design Concentration (% by Volume) <sup>e</sup> |          |        |        |        |        |  |  |
| (°F) <sup>c</sup> | (ft <sup>3</sup> /lb) <sup>d</sup>                                             | 3      | 4      | 5                                               | 6        | 7      | 8      | 9      | 10     |  |  |
| -20               | 0.93678                                                                        | 0.0330 | 0.0445 | 0.0562                                          | 0.0681   | 0.0803 | 0.0928 | 0.1056 | 0.1186 |  |  |
| -10               | 0.96119                                                                        | 0.0322 | 0.0433 | 0.0548                                          | 0.0664   | 0.0783 | 0.0905 | 0.1029 | 0.1156 |  |  |
| 0                 | 0.9856                                                                         | 0.0314 | 0.0423 | 0.0534                                          | 0.0648   | 0.0764 | 0.0882 | 0.1003 | 0.1127 |  |  |
| 10                | 1.01001                                                                        | 0.0306 | 0.0413 | 0.0521                                          | 0.0632   | 0.0745 | 0.0861 | 0.0979 | 0.1100 |  |  |
| 20                | 1.03442                                                                        | 0.0299 | 0.0403 | 0.0509                                          | 0.0617   | 0.0728 | 0.0841 | 0.0956 | 0.1074 |  |  |
| 30                | 1.05883                                                                        | 0.0292 | 0.0394 | 0.0497                                          | 0.0603   | 0.0711 | 0.0821 | 0.0934 | 0.1049 |  |  |
| 40                | 1.08324                                                                        | 0.0286 | 0.0385 | 0.0486                                          | 0.0589   | 0.0695 | 0.0803 | 0.0913 | 0.1026 |  |  |
| 50                | 1.10765                                                                        | 0.0279 | 0.0376 | 0.0475                                          | 0.0576   | 0.0680 | 0.0785 | 0.0893 | 0.1003 |  |  |
| 60                | 1.13206                                                                        | 0.0273 | 0.0368 | 0.0465                                          | 0.0564   | 0.0665 | 0.0768 | 0.0874 | 0.0981 |  |  |
| 70                | 1.15647                                                                        | 0.0267 | 0.0360 | 0.0455                                          | 0.0552   | 0.0651 | 0.0752 | 0.0855 | 0.0961 |  |  |
| 80                | 1.18088                                                                        | 0.0262 | 0.0353 | 0.0446                                          | 0.0541   | 0.0637 | 0.0736 | 0.0838 | 0.0941 |  |  |
| 90                | 1.20529                                                                        | 0.0257 | 0.0346 | 0.0437                                          | 0.0530   | 0.0624 | 0.0721 | 0.0821 | 0.0922 |  |  |
| 100               | 1.22970                                                                        | 0.0252 | 0.0339 | 0.0428                                          | 0.0519   | 0.0612 | 0.0707 | 0.0804 | 0.0904 |  |  |
| 110               | 1.25411                                                                        | 0.0247 | 0.0332 | 0.0420                                          | 0.0509   | 0.0600 | 0.0693 | 0.0789 | 0.0886 |  |  |
| 120               | 1.27852                                                                        | 0.0242 | 0.0325 | 0.0412                                          | 0.0499   | 0.0589 | 0.0680 | 0.0774 | 0.0869 |  |  |
| 130               | 1.30293                                                                        | 0.0997 | 0.0250 | 0.0404                                          | 0.0490   | 0.0578 | 0.0667 | 0.0759 | 0.0853 |  |  |
| 140               | 1.32734                                                                        | 0.     |        | 0407                                            | 0.0481   | 0.0567 | 0.0655 | 0.0745 | 0.0837 |  |  |
| 150               | 1.35175                                                                        | 0. 4   | )% = U | .040/:                                          | 0.0472   | 0.0557 | 0.0643 | 0.0732 | 0.0822 |  |  |
| 160               | 1.37616                                                                        | 0.(    |        |                                                 | 0.0464   | 0.0547 | 0.0632 | 0.0719 | 0.0807 |  |  |
| 170               | 1.40057                                                                        | 0.0221 | 0.0297 | 0.0376                                          | 0.0456   | 0.0537 | 0.0621 | 0.0706 | 0.0793 |  |  |
| 180               | 1.42498                                                                        | 0.0217 | 0.0292 | 0.0369                                          | 0.0448   | 0.0528 | 0.0610 | 0.0694 | 0.0780 |  |  |
| 190               | 1.44939                                                                        | 0.0213 | 0.0287 | 0.0363                                          | 0.0440   | 0.0519 | 0.0600 | 0.0682 | 0.0767 |  |  |
| 200               |                                                                                |        |        |                                                 | _        |        | )      | 0.0671 | 0.0754 |  |  |
| 210               | 0/075                                                                          |        | imo (1 |                                                 | ft3\ _ / | 107 5  | hej    | 0.0660 | 0.0742 |  |  |
| 220               |                                                                                |        | c ( I  | 0,000                                           | ・・ノー・    |        | 103    | 0.0650 | 0.0730 |  |  |



Table A.5.5.1(i) (HFC-227ea) otal Flooding Quantity (U.S. Units)<sup>a</sup>



|                   |                | Weight Requirements of Hazard Volume, W/V(lb/ft <sup>3</sup> ) <sup>b</sup> |                                                           |            |        |        |        |        |        |        |        |
|-------------------|----------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|------------|--------|--------|--------|--------|--------|--------|--------|
| Tomo(t)           | Specific Vapor |                                                                             | <b>7%</b> Design Concentration (% by Volume) <sup>e</sup> |            |        |        |        |        |        |        |        |
| $(^{\circ}F)^{c}$ | $(ft^3/lb)^d$  | 6                                                                           | 7                                                         | 8          | 9      | 10     | 11     | 12     | 13     | 14     | 15     |
| 10                | 1.9264         | 0.0331                                                                      | 0.0391                                                    | 0.0451     | 0.0513 | 0.0570 | 0.0642 | 0.0708 | 0.0776 | 0.0845 | 0.0916 |
| 20                | 1.9736         | 0.0323                                                                      | 0.0381                                                    | 0.0441     | 0.0501 | 0.0563 | 0.0626 | 0.0691 | 0.0757 | 0.0825 | 0.0894 |
| 30                | 2.0210         | 0.0316                                                                      | 0.0372                                                    | 0.0430     | 0.0489 | 0.0550 | 0.0612 | 0.0675 | 0.0739 | 0.0805 | 0.0873 |
| 40                | 2.0678         | 0.0309                                                                      | 0.0364                                                    | 0.0421     | 0.0478 | 0.0537 | 0.0598 | 0.0659 | 0.0723 | 0.0787 | 0.0853 |
| 50                | 2.1146         | 0.0302                                                                      | 0.0356                                                    | 0.0411     | 0.0468 | 0.0525 | 0.0584 | 0.0645 | 0.0707 | 0.0770 | 0.0835 |
| 60                | 2.1612         | 0.0295                                                                      | 0.0348                                                    | 0.0402     | 0.0458 | 0.0514 | 0.0572 | 0.0631 | 0.0691 | 0.0753 | 0.0817 |
| 70                | 2.2075         | 0.0289                                                                      | 0.0341                                                    | 0.0394     | 0.0448 | 0.0503 | 0.0560 | 0.0618 | 0.0677 | 0.0737 | 0.0799 |
| 80                | 2.2538         | 0.0283                                                                      | 0. 34                                                     | 0.0386     | 0.0439 | 0.0493 | 0.0548 | 0.0605 | 0.0663 | 0.0722 | 0.0783 |
| 90                | 2.2994         | 0.0278                                                                      | 0 0327                                                    | 0.0378     | 0.0430 | 0.0483 | 0.0538 | 0.0593 | 0.0650 | 0.0708 | 0.0767 |
| 100               | 2.3452         | 0.0272                                                                      | 0.0321                                                    | 0.0371     | 0.0422 | 0.0474 | 0.0527 | 0.0581 | 0.0637 | 0.0694 | 0.0752 |
| 110               | 2.3912         | 0.0267                                                                      | 0.0315                                                    | 0.0364     | 0.0414 | 0.0465 | 0.0517 | 0.0570 | 0.0625 | 0.0681 | 0.0738 |
| 120               | 2.4366         | 0.0262                                                                      | 0.0309                                                    | 0.0357     | 0.0406 | 0.0456 | 0.0507 | 0.0560 | 0.0613 | 0.0668 | 0.0724 |
| 130               | 2.4820         | 0.0054                                                                      | 0.0000                                                    | 0.0050     | 0.0398 | 0.0448 | 0.0498 | 0.0549 | 0.0602 | 0.0656 | 0.0711 |
| 140               | 2.5272         | 70/                                                                         | 0 034                                                     | 4          | 0.0391 | 0.0440 | 0.0489 | 0.0540 | 0.0591 | 0.0644 | 0.0698 |
| 150               | 2.5727         | /0 -                                                                        | 0.034                                                     | 8          | 0.0384 | 0.0432 | 0.0480 | 0.0530 | 0.0581 | 0.0633 | 0.0686 |
| 160               | 2.6171         | 0.0244                                                                      | 0.0288                                                    | 0.0332     | 0.0378 | 0.0425 | 0.0472 | 0.0521 | 0.0571 | 0.0622 | 0.0674 |
| 170               | 2.6624         | 0.0240                                                                      | 0.0283                                                    | 0.0327     | 0.0371 | 0.0417 | 0.0464 | 0.0512 | 0.0561 | 0.0611 | 0.0663 |
| 180               | 1404 0         | 0 0000                                                                      | 0.0970                                                    | 0.0001     | 0.0965 | 0.0410 | 0.0487 | 0.0504 | 0.0552 | 0.0601 | 0.0652 |
| 190               | 0 034          | 1 🗸 🗤                                                                       | alum                                                      | <b>(10</b> | 000    | f+3\ _ | 2/1    | lhe    | 0.0543 | 0.0592 | 0.0641 |
| 200               | 0.034          |                                                                             | June                                                      | עון ד      | ,000   | 11°) = | J4 I   | 103    | 0.0535 | 0.0582 | 0.0631 |



#### **Calculations:**

$$W = \frac{V}{s} \boxed{\frac{C}{100 - C}}$$

$$C = \frac{100 \times s \times W}{s \times W + V}$$

- V = Volume of Protected space (ft<sup>3</sup>)
- s = Specific Vapor Volume (ft<sup>3</sup>/lb) (s = .9856 + .002441 (t))
- C = Concentration %
- FF = Flooding Factor





#### **Cylinder Sizes**





| PRESSURE<br>AT 70° F<br>(20° C) | NOMINAL<br>VOLUME | A<br>(in.) | B<br>(in.) | C<br>(in.) | D<br>(in.) | <i>AMOUNT</i><br>MIN. | FILLED  | EMPTY<br>WEIGHT |
|---------------------------------|-------------------|------------|------------|------------|------------|-----------------------|---------|-----------------|
|                                 | 140 lb            | 71.4       | 47.8       | 10         | 27.5       | 46 lbs                | 137 lbs | 108 lbs         |
| 360 PSI                         | 280 lb            | 67.2       | 40.9       | 16         | 27.5       | 94 lbs                | 280 lbs | 190 lbs         |
| (25 bar)                        | 390 lb            | 80.4       | 54.0       | 16         | 41.4       | 130 lbs               | 388 lbs | 229 lbs         |
|                                 | 500 lb            | 82.0       | 61.5       | 16         | 51.2       | 159 lbs               | 476 lbs | 313 lbs         |
| 725 PSI -                       | 220 lb            | 58.5       | 34.9       | 16         | 23.6       | 71 lbs                | 211 lbs | 218 lbs         |
|                                 | 390 lb            | 80.2       | 53.8       | 16         | 41.4       | 124 lbs               | 370 lbs | 289 lbs         |
| (100 001)                       | 500 lb            | 93.6       | 67.2       | 16         | 51.2       | 159 lbs               | 476 lbs | 395 lbs         |





<sup>2)</sup> all dimensions are approximately, variations due to manufacturing tolerances are possible



#### **Health and Safety Considerations**

All Clean Agents recognized in NFPA 2001 must be evaluated and listed under the EPA – SNAP Program

Safety levels expressed by NOAEL and LOAEL designation

#### NOAEL - No Observable Adverse Effect Level

The highest concentration at which no adverse toxicological or physiological effect has been observed
LOAEL - Lowest Observable Adverse Effect Level The lowest concentration at which an adverse

physiological or toxicological effect has been observed.



#### **Safety Margins**

|                  | FK-5-1-12<br>(Novec™ 1230) | HFC-227ea<br>(FM-200™) | HFC-125<br>(FE-25™) | lG-01<br>(Argon) | IG-541<br>(Inergen) |
|------------------|----------------------------|------------------------|---------------------|------------------|---------------------|
| NOAEL            | 10%                        | 9%                     | 7.5%                |                  |                     |
| LOAEL            | >10%                       | 10.5%                  | 10%                 |                  |                     |
| No Effect Level  | -                          | -                      | -                   | 43%              | 52%                 |
| Low Effect Level | -                          | -                      | -                   | 43%              | 52%                 |





#### **Global Warming is the Current Environmental Challenge**

| Properties                               | Halon 1301 | FK-5-1-12<br>(Novec™ 1230) | HFC-227ea<br>(FM-200™) | HFC-125<br>(FE-25™) | IG-01<br>(Argon) | IG-541<br>(Inergen) |
|------------------------------------------|------------|----------------------------|------------------------|---------------------|------------------|---------------------|
| Ozone<br>Depletion<br>Potential<br>(ODP) | 12         | 0.0                        | 0.0                    | 0.0                 | 0.0              | 0.0                 |
| Global<br>Warming<br>Potential<br>(GWP)  | 6900       | 1                          | 3500                   | 3400                | 0.0              | 0.0                 |
| Atmospheric<br>Lifetime<br>(years)       | 65         | 0.014                      | 33                     | 29                  | 0.0              | 0.0                 |



## **System Design Considerations**

**Room Requirements** 

- Length, width, and height
- Sub-floor
- Preferred tank location
- Room integrity
- Room must be tight enough to maintain concentration
- HVAC must be shut down unless it is self-contained
- Identify any enclosable openings
- Pressure relief venting may be required



## **System Design Considerations**

**Electrical Requirements** 

- Detection
- Manual pull station
- Abort stations
- Alarm bell inside area (first warning)
- Pre-discharge horn strobe inside area (pre-discharge)
- Flashing strobes above each entrance into protected area
- Warning signs by alarms inside and outside of the room





- FSSA Overview
- Fire Protection and YOU!
- Clean Agent Options
- Clean Agent System Design
- Your Clean Agent System
- Questions / Answers



# Your Clean Agent System



## -Fire!!???!!

- 2 Smoke Detectors Initiate (Cross-Zoned)
- Pre-Discharge Horn Strobe
- Time Delay of 30s
- Investigate
- Abort or Evacuate?
- No Abort Discharge

#### If Discharge

- No Fire Damage
- No Residue
- No Clean-Up
- No Business Interruption

# Your Clean Agent System



## -Test & Inspect

- Annual Inspection
- Semi-Annual Inspection
- Maintenance / Repair
- Training / Awareness
- FSSA Member Installer



# Clean Agents 101



## **FSSA Upcoming Events**









## More Information or Questions?

### Visit <u>www.fssa.net</u>

#### or

## Call the FSSA Headquarters at (410) 931-8100





FSSA Webinar Clean Agents 101

## Todd Stevens, SET, CFPS

Fire Protection Special Hazards Project Manager JC Cannistraro LLC

## Michelle Thompson, MBA

Corporate Director of Marketing BFPE International



**Thank You!** 

